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Large-N expansion of quantum field theory (QFT) models with internal U(N) (or O(N)) “flavor” symme-
try, where the fundamental matter fields belong to the vector representation (vector QFT models for short),
is one of the principal, most well understood and systematically developed non-perturbative methods. Here
the term “non-perturbative” means that large-N expansion is qualitatively different from standard (“naive”)
perturbation theory w.r.t. coupling constant(s), as its diagrams involve new types of internal propagator
lines corresponding to auxiliary “flavor”-singlet composite fields which are given by infinite resummation of
(subsets of) ordinary Feynman diagrams. The latter results in improved ultraviolet (UV) behavior of large-N
diagrams which coupled with the fact that 1/N is dimensionless expansion parameter makes renormalizable
those vector QFT models which are non-renormalizable w.r.t. the ordinary perturbation theory. Another im-
portant general property of large-N expansion is that it exhibits linear realization of U(N) (or O(N)) “flavor”
symmetry in QFT models with a nonlinearly realized “flavor” symmetry, i.e., the nonlinear sigma-models.

Large-N expansion is the main instrument in uncovering and for explicit description of the following
important properties of QFT (henceforth dimensionality of space-time will be denoted by D):

(i) D = 2 QFT: dynamical breakdown of classical conformal symmetry via dimensional transmutation of
coupling constants together with asymptotic freedom, as well as construction of higher local quantum conserved
currents in D = 2 integrable models.

(ii) D ≥ 3 QFT: dynamical breaking of continuous and discrete (space- and time-reflection) symme-
tries; non-trivial phase structure (several distinct types of phases with multiple order parameters) and the
pertinent phase transitions; non-perturbative particle spectra qualitatively different in the various phases;
dynamical mass generation for the fundamental N -component matter fields; dynamical generation of mas-
sive gauge bosons where the standard Higgs mechanism is inoperative; particle confinement in some of the
phases, explicit appearance of composite bosons and fermions; renormalization of non-renormalizable (w.r.t.
ordinary perturbation theory) QFT models.

(iii) Further applications of large-N expansion of vector models in various areas of QFT and statisti-
cal mechanics (i.e., Euclidean QFT) include: finite-size effects (finite-size scaling in the nonlinear sigma-
models); stochastic Langevin equation in dissipative dynamics; finite-temperature QFT (dimensional reduc-
tion crossover at high temperature); Bose-Einstein condensation in weakly interacting Bose gas; multicritical
points and double scaling limit; for a comprehensive review, see ref.[1].

Derivation of large-N expansion via functional integral techniques is based on the following general pre-
scription: (a) Introduce appropriate set of auxiliary “flavor”-singlet fields and rewrite the original action in
a (classically) equivalent form which is quadratic w.r.t. fundamental N -component matter fields; (b) In the
functional integral expression for the generating functional of the quantum correlation functions perform the
Gaussian functional integral over the N -component matter fields to obtain an effective action depending only
on “flavor”-singlet fields, where the factor N appears as a common factor in front of it in the same way as
the Planck constant appears as a common factor 1/~ in front of the ordinary classical action in the standard
functional integral; (c) Then the large-N expansion becomes “semiclassical” expansion around saddle points
of the effective “flavor”-singlet action, which can be viewed as vacuum expectation values of the pertinent
“flavor”-singlet fields in the leading order w.r.t. 1/N (cf. Eqs.(11) below).

Our first example will be the large-N expansion in D = 2 O(N) nonlinear sigma-model whose Lagrangian

∗Preliminary version of a contribution to the “Quantum Field Theory. Non-Perturbative QFT” topical area of Modern
Encyclopedia of Mathematical Physics (SELECTA), eds. Aref’eva I, and Sternheimer D, Springer (2007)
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is given by:

LNLSM = ∂+ϕ
a∂−ϕa, ~ϕ 2 = N/g , ∂± =

1

2

(
∂

∂x0
±

∂

∂x1

)
~ϕ =

(
ϕ1, . . . ϕN

)
(1)

The large-N expansion is obtained from the generating functional of the time-ordered correlation functions:

Z[J ] =

∫
D~ϕ

∏

x

δ
(
~ϕ 2 −N/g

)
exp

{
i

∫
d2x

[
∂+~ϕ ∂−~ϕ+

(
~J, ~ϕ

)] }
(2)

=

∫
D~ϕDα exp

{
i

∫
d2x

[
∂+~ϕ∂−~ϕ−

1

2
α

(
~ϕ 2 −N/g

)
+

(
~J, ~ϕ

)] }

=

∫
Dα exp

{
−
N

2
S1[α] +

i

2

∫
d2xd2y

(
~J(x), (−∂2 + α)−1 ~J(y)

) }

S1[α] ≡ Tr ln(−∂2 + α) −
i

g

∫
d2xα , ∂2 = −

(
∂

∂x0

)2

+

(
∂

∂x1

)2

(3)

by expanding the effective α-field action (3) around its constant saddle point α̂ ≡ m2, i.e., α(x) =
m2 + 1√

N
α̃(x). From the stationary equation δS1[α]/δα

∣∣
α=m2= 0 one obtains m2 = µ̂2e−4π/g, where µ̂

is a renormalization mass scale appearing due to renormalization of the UV divergence coming from the
first term in (3) (see Eq.(13) below). Thus, the “Goldstone” fields ~ϕ acquire dynamically generated mass
(squared) α̂ ≡ m2, classical conformal invariance of (2) is broken due to the dimensional transmutation (the
dimensionless coupling g is replaced by m2), and the classically nonlinearly realized O(N) “flavor” symme-
try becomes linearly realized on the quantum level. From (3) one arrives at the large-N diagram technique

with (free) propagators in momentum space:
〈
ϕa ϕb

〉
(0)

= −i
(
m2 + p2

)−1
δab, 〈α̃ α̃〉(0) =

(
Σ

(
p2

))−1

with

Σ
(
p2

)
=

∫
d2k

(2π)2

[(
m2 + k2

) (
m2 + (p− k)2

)]−1
, and tri-linear α̃ϕϕ-vertices, where one-loop ϕ-tadpoles and

subdiagrams of the form in the picture below are forbidden (solid lines depict ϕ propagators, dashed lines
depict α̃ propagators).

The diagrams of the large-N expansion of vector QFT models still contain UV divergences which can
be systematically renormalized both in D = 2 and D ≥ 3 by a version of the mass-independent (“soft-
mass”) momentum-space subtraction procedure of Zimmermann-Lowenstein, which in turn is based on BPHZ
(Bogoliubov-Parasiuk-Hepp-Zimmermann) renormalization scheme. The mass-independent momentum-space
subtraction renormalization (for details, see the link BPHZL Renormalization) has the advantage over other
renormalization schemes that it can be applied simultaneously and in an uniform way in all phases of the
pertinent QFT models, especially in those of them with phases containing massless particles where particular
care is needed to avoid possible infra-red singularities.

A remarkable property of the large-N expansion in nonlinear sigma models is that the nonlinearity of
the “Goldstone” field ~ϕ(x) is preserved on the quantum level as an identity on the correlation functions, in
spite of the manifest linear O(N) symmetry of the large-N diagrams:

〈
N

[
~ϕ2P (~ϕ, ∂~ϕ)

]
(x) . . .

〉
= const

〈
N

[
P (~ϕ, ∂~ϕ)

]
(x) . . .

〉
(4)

where P (~ϕ, ∂~ϕ) is arbitrary local polynomial of the fundamental fields and their derivatives, and N [. . .]
indicates BPHZL-renormalized normal product of the corresponding composite fields.

Using the BPHZL-renormalized large-N expansion one can explicitly construct the higher quantum lo-

cal conserved currents J
(s)
± for the model (1) (∂+J

(s)
− + ∂−J

(s)
+ = 0, s = 3, 5, . . ., where s indicates the

D = 2 Lorentz spin of the corresponding higher conserved charge). Their existence is of profound impor-
tance as they imply quantum integrability of the O(N) nonlinear sigma-model (1). The first non-trivial
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higher quantum local conserved current is of the form:

J
(3)
− = N

[(
∂2
−~ϕ

)2
]

+ a1N
[(

(∂−~ϕ)2
)2

]
, J

(3)
+ =

(
1

2
+ a2

)
N

[
(∂−~ϕ)

2
α
]

+ a3∂
2
−α (5)

where all coefficients a1,2,3 = O(1/N) are expressed in terms of one-particle irreducible correlation functions
and their derivatives in momentum space at zero external momenta. Their explicit form can be found order
by order in 1/N from the renormalized large-N diagram technique described above. Let us stress, that (5)

as well as its higher counterparts J
(s)
± for s = 5, 7, . . . do not have analogues in the classical conformally

invariant O(N) nonlinear sigma-model (1).
As a second non-trivial example let us consider the D = 3 gauged nonlinear sigma-models with fermions

(GNLSM + F )3, with internal symmetry U(N)(“flavor”) × U(n)(“color” gauge) (n < N). Special physi-
cally relevant cases of the latter are the supersymmetric nonlinear sigma-models on complex projective and

Grassmannian manifolds (e.g., by taking e2 → ∞, ε = 1 in (6) below). On the other hand, (GNLSM +F )3
themselves can be viewed as special fixed points of general D = 3 (non-Abelian) Higgs models with fermions,
containing “non-renormalizable” four-fermion couplings. (GNLSM +F )3 are of particular physical interest
since their large-N expansion explicitly displays all the fundamental non-perturbative properties listed above
under (ii). Below we will discuss for simplicity large-N expansion for the Abelian (GNLSM + F )3 (n = 1,
the non-Abelian case being a straightforward generalization).

The pertinent Lagrangian reads:

LGNLSM+F = − (∇ν(A)ϕa)
∗
(∇ν(A)ϕa) + iψ̄aγ

ν∇(ε)
ν (A)ψa +

g

4Nµ

(
ψ̄aψ

a
)2

−
N

4e2µ
Fνλ(A)F νλ(A) (6)

with constraints ϕ∗
aϕ

a − Nµ/T = 0 , ψ̄aϕ
a = ϕ∗

aψ
a = 0. Here the following notations are used:

∇ν(A)ϕa = (∂ν + iAν)ϕ
a, ∇

(ε)
ν (A)ψa = (∂ν + iεAν)ψ

a, Fνλ(A) = ∂νAλ − ∂λAν , where the “flavor”
indices a = 1, . . . , N and the space-time indices ν, λ = 0, 1, 2; ε is the ratio of fermionic to bosonic electric
charges; γν are the standard D = 3 Dirac gamma-matrices; µ denotes a common mass scale exhibiting the
dimensionfull nature of the coupling constants T/µ, g/µ, e2µ. Note the presence of the “non-renormalizable”
four-fermion (Gross-Neveu) term in (6).

Apart from the continuous U(N)(“flavor”) × U(1)(gauge) symmetry, (GNLSM + F )3 (6) is invari-
ant also under the discrete space-time transformations – space (P -) and time (T -) reflections: ϕ(P,T )(x) =
ηP,Tϕ(xP,T ), ψ(P,T )(x) = ηP,Tγ1,2ϕ(xP,T ), A(P )(x) = (A0,−A1, A2)(xP,T ), A(T )(x) = (A0,−A1,−A2)(xP,T ),
where xP = (x0,−x1, x2), xT = (−x0, x1, x2) and |ηP,T | = 1. Note that fermionic mass term reverses sign
under P, T -reflection: ψ̄(P,T )ψ(P,T )(x) = −ψ̄ψ(xP,T ) and due to its absence in (6) the classical (GNLSM +
F )3 is P, T -invariant. Therefore, P, T -reflection symmetries can be viewed as D = 3 analogues of the
chiral symmetry in D = 4 gauge theories with massless chiral fermions.

Introducing a set of auxiliary U(N)-singlet fields (real scalar α,σ and complex fermionic ρ) one can
rewrite the action (6) in the following (classically) equivalent form:

LGNLSM+F = − (∇ν(A)ϕa)
∗ (∇ν(A)ϕa) − α (ϕ∗

aϕ
a −Nµ/T ) + iψ̄aγ

ν∇(ε)
ν (A)ψa − σψ̄aψ

a

−
Nµ

g
σ2 + ϕa

(
ψ̄aρ

)
+ (ρ̄ψa)ϕ∗

a −
N

4e2µ
Fνλ(A)F νλ(A) (7)

Derivation of the large-N expansion for the quantum generating functional Z[JΦ] of (7) proceeds along
similar lines as for the D = 2 O(N) nonlinear sigma-model (1)–(3). Unlike the D = 2 case, in D ≥ 3 the
fundamental N -component scalar field may acquire non-zero vacuum expectation value for certain range of
the parameters, therefore, it is appropriate to split it in two parts – parallel and orthogonal w.r.t. direction
of the (possible) vacuum expectation value: ~ϕ = ~ϕ|| + ~ϕ⊥. Without loss of generality one may choose

~ϕ|| = (0, . . . , 0, N
1
2ϕ||) and ~ϕ⊥ = (ϕ1, . . . , ϕN−1, 0). Then performing the Gaussian functional integration

w.r.t. ~ϕ⊥, ψ one gets:

Z[JΦ] =

∫
D~ϕ⊥DψDϕ||DαDσDρDAµ exp

{
i

∫
d3x

[
LGNLSM+F +

∑

Φ=ϕ,ψ,...

JΦ(x)Φ(x)
]}

(8)

=

∫
Dϕ||DαDσDρDAµ exp

{
iNS1

[
ϕ||, α, σ, ρ, A

]
+ iS2[JΦ]

}
(9)
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Here the effective action reads:

S1

[
ϕ||, α, σ, ρ, A

]
= i(1 − 1/N)Tr ln ∆B − iTr ln ∆F

+

∫
d3x

[
−

1

2
ϕ∗
||∆Bϕ|| − αµ/T − σ2µ/g −

1

4e2µ
Fνλ(A)F νλ(A)

]
(10)

where ∆F ≡ iγλ∇
(ε)
ν (A) − σ, ∆B ≡ −∇ν(A)∇ν (A) + α + ρ̄∆−1

F ρ, and S2[JΦ] contains the terms with the
sources.

Because of Lorentz invariance of the vacuum only ϕ||, α and σ may have non-zero constant stationary
values ϕ̂|| ≡ v, α̂ ≡ m2

ϕ, σ̂ ≡ mψ where:

〈ϕa〉 = N
1
2

[
vδaN +O(N−1)

]
, 〈α〉 = m2

ϕ +O(N−1) ,
〈
ψ̄ψ

〉
=

2Nµ

g
〈σ〉 =

2Nµ

g

[
mψ +O(N−1)

]
(11)

Thus, the saddle-point equations acquire the form:

δS1

δϕ∗
||

= −m2
ϕ v = 0 ,

δS1

δα
=
mϕ

4π
−

[
|v|2 + µ

(
1

Tc
−

1

T

)]
= 0 ,

δS1

δσ
= −2mψ

[
mψ

4π
− µ

(
1

Tc
−

1

g

)]
= 0 (12)

The dimensionless constant Tc = 4πµ/µ̂ arises in the evaluation of the UV-divergent integrals appearing in
the variational derivatives of S1 which are renormalized according to the “soft-mass” BPHZL subtraction
scheme with arbitrary scale µ̂ (in particular, one may take µ̂ = µ) :

i
δTr ln ∆B

δα

∣∣∣∣∣
bα=m2

ϕ,...,bρ=0

=

{
i

∫
dDp/(2π)D [m2

ϕ + p2]−1

}ren

= i

∫
dDp/(2π)D

[(
m2
ϕ + p2

)−1
−

(
µ̂2 + p2

)−1
]

=

{
1
4π ln

(
m2
ϕ/µ̂

2
)

for D = 2
1
4π (mϕ − µ̂) for D = 3

(13)

and similarly for −i {δTr ln ∆F /δσ}
∣∣
bσ=mψ,A=0

.

The solutions of the saddle-point equations (12) yield the following phase structure of (GNLSM + F )3
(6) characterized by two order parameters 〈~ϕ〉,

〈
ψ̄ψ

〉
(11):

(I) U(N)(“flavor”)×U(1)(gauge) and P, T -symmetric “high-temperature” phase for T > Tc and 0 < g <
Tc, where: v = 0, mϕ = 4πµ (1/Tc − 1/T ), mψ = 0.

(II) U(N)(“flavor”)×U(1)(gauge) symmetric “high-temperature” phase with spontaneous breakdown of
discrete P, T -reflection symmetries due to dynamical generation of fermionic mass mψ for T > Tc and either
g < 0 or Tc < g < 2Tc, where: v = 0, mϕ = 4πµ (1/Tc − 1/T ), mψ = 4πµ (1/Tc − 1/g).

(III) P, T -symmetric “low-temperature” phase with spontaneous breakdown of internal U(N)(“flavor”)×

U(1)(gauge) due to non-zero 〈~ϕ〉 (11) for T < Tc and 0 < g < Tc, where: |v|2 = µ (1/T − 1/Tc), mϕ = 0,
mψ = 0.

(IV) “Low-temperature” phase with spontaneous breakdown of both the discrete P, T -symmetries (as in
phase (II)) and internal symmetry (as in phase (III)) for T < Tc and either g < 0 or Tc < g < 2Tc, where:
|v|2 = µ (1/T − 1/Tc), mϕ = 0, mψ = 4πµ (1/Tc − 1/g).

Let us recall that P, T -reflection symmetries are D = 3 analogues of the fermionic chiral symmetry in
D = 4.

The restriction g < 2Tc above originates from the stability requirement for the quantum effective potential
of (GNLSM+F )3 (6). According to the general definition it is given as a Legendre transform of the logarithm
of the quantum generating functional (8): U

(
〈~ϕ〉, 〈ψ̄ψ〉

)
= −i lnZ

[
Jϕ, Jψ̄ψ

]
−

(
J∗
ϕa〈ϕ

a〉 + 〈ϕ∗
a〉J

a
ϕ + Jψ̄ψ〈ψ̄ψ〉

)
.

In the large-N limit one obtains (cf. the relations (11)): N−1U
(
〈~ϕ〉, 〈ψ̄ψ〉

)
= U1 (〈~ϕ〉, 〈σ〉)−g/4µ (δU1/δ〈σ〉)

2

where U1 (〈~ϕ〉, 〈σ〉) = 1/6π
(
|〈σ〉|3 − 〈α〉3/2

)
− µ|〈σ〉|2 (1/Tc − 1/g) + 〈σ〉

[
|〈~ϕ〉|2 + µ (1/Tc − 1/T )

]
.

All transitions between any pair of the above phases are second-order on the lines T = Tc and g = Tc on
the (T, g) parameter plane. On the other hand, the line g = 0 corresponds to first-order phase transitions
between phases (I) and (II) for T > Tc, and between phases (III) and (IV) for T < Tc.
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All four phases exhibit qualitatively different non-perturbative particle spectra. The spectra are di-
rectly derived from the momentum-space pole structure of the propagators in the pertinent large-N dia-
grams, where the propagators themselves are determined from the quadratic part of the expansion of the
large-N effective action (10) around its saddle points. The highlights of these spectra include appearance
of composite bosons and fermions in phases (II) and (IV), “confinement” of part of the fundamental N -
component matter fields (ϕ, ψ) in phases (III) and (IV). The most interesting effect occurs in phase (II),
which contains massive gauge bosons due to dynamical generation in the large-N effective action (10) of a
P, T -noninvariant topological Chern-Simmons term 1/16π

∫
d3x εκλνAκFλν(A). In all other phases the gauge

bosons are “confined” due to appearance of
√
p2-singularity in the Aν -propagators. Thus, in spite of the

unbroken gauge symmetry in phases (I) and (II), massless gauge bosons are absent there. Also, the standard
Higgs mechanism for generating masses of gauge bosons does not operate in phases (III) and (IV) in spite
of the spontaneous breakdown of the gauge symmetry there.

It is also worth mentioning that at the critical point T = Tc, g = Tc and upon taking the scaling limit
(GNLSM + F )3 (6) becomes the D = 3 supersymmetric non-linear sigma-model on the complex projective

space CPN−1: LsusyCPN−1 = − (∇ν(A)ϕa)
∗
(∇ν(A)ϕa) + iψ̄aγ

ν∇ν(A)ψa + Tc
4Nµ

(
ψ̄aψ

a
)2

with constraints

ϕ∗
aϕ

a −Nµ/Tc = 0 , ψ̄aϕ
a = ϕ∗

aψ
a = 0. This is a non-trivial D = 3 conformal field theory with a well-

defined renormalizable large-N expansion where all relevant anomalous conformal dimensions (some of them
describing the critical behaviour of (GNLSM+F )3 (6) in the vicinity of the second-order phase transitions)
can be explicitly computed order by order in 1/N from the large-N diagram techniques.

Further Reading.

Ref.[1] contains a comprehensive review (together with an extensive list of references) of most of the
relevant aspects and applications of large-N expansion of vector QFT models, especially those mentioned
under (iii) above (see also the book [2]). More details about application of large-N expansion to con-
struct higher local quantum conserved currents in D = 2 integrable QFT models with O(N) (or U(N))
internal symmetry can be found in refs.[3,4] and references therein. For a systematic renormalization of the
large-N expansion, including proofs of renormalizability of QFT models which are non-renormalizable within
the standard perturbation theory, see refs.[5,6,7] and references therein. Further details about application
of large-N expansion to derive non-trivial phase structure and non-perturbative particle spectra in D = 3
gauge theories with fermions, including supersymmetric nonlinear sigma-models, can be found in refs.[7,6]
and references therein. For the role of large-N vector QFT models in the context of anti-de-Sitter/conformal-
field-theory dualities in modern non-perturbative string theory, see ref.[8].
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BPHZL Renormalization

The mass-independent (“soft-mass”) renormalization scheme of of Zimmermann-Lowenstein [1,2] is based
on the standard BPHZ (Bogoliubov-Parasiuk-Hepp-Zimmermann) momentum-space subtraction procedure
(the former is called BPHZL renormalization scheme for short). The general idea is to perform all sub-
tractions in the integrands of ultraviolet (UV) divergent Feynman diagrams at zero external momenta and
at zero values of the mass parameters except for those which by naive power counting would give rise to
infra-red (IR) divergences, so that the latter subtractions are performed at zero external momenta but at
non-zero values of the mass parameters.

Technically, this is accomplished in the following way:
(a) One rescales temporarily all dimensionfull (mass) parametersM entering the propagators and vertices

of a diagram M → sdMM where dM is the canonical mass dimension of M and at the end of the subtraction
procedure the auxiliary parameter s is set to s = 1.

(b) For the masses in the propagators of the fundamental bosonic (ϕ) and fermionic (ψ) matter fields
one assigns temporarily a slightly more complex dependence on the auxiliary parameter s:

−i
[
(smϕ + (1 − s)µ)2 + P 2(p, k)

]−1

, −i (smψ − γνPν(p, k))
[
(smψ + (1 − s)µ)2 + P 2(p, k)

]−1

where P (p, k) is a linear combination of external {p} and internal {k} momenta, µ is arbitrary renormalization
mass scale and again at the end of the subtraction procedure one sets s = 1.

(c) The momentum space Taylor subtraction operators τδ(Γ),ρ(Γ) in the fundamental “forest formula” of
the recurrsive BPHZ subtraction scheme, acting on the integrand of a UV-divergent (sub)diagram Γ, are

now defined as: 1−τδ(Γ),ρ(Γ) =
(
1 − t

ρ(Γ)−1
{p},s−1

) (
1 − t

δ(Γ)
{p},s

)
. Here δ(Γ) and ρ(Γ) are the UV and IR indices of

the (sub)diagram Γ determined from the asymptotic behaviour of its integrand for large internal momenta,
and for small internal momenta at vanishing external momenta and all masses set to zero, respectively. tnx,y

denotes the usual Taylor subtraction operator: tnx,yF (x, y) ≡
∑n
k,l=0 , k+l≤n

xk

k!
yl

l!
∂k+lF
∂xk∂yl

∣∣
x=0,y=0

.

BPHZL renormalization has found a non-trivial application in the systematic renormalization of non-
perturbative large-N expansions of nonlinear sigma-models and their supersymmetric extensions [3,4] which
look “non-renormalizable” from the point of view of naive perturbation theory w.r.t. coupling constants and
which display rich phase structure with various “low-temperature” phases containing massless particles.
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